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1 Supplementary Methods

1.1 DNA preparation

Each 50 ml biological sample was thawed, homogenized, and two 15ml subsamples withdrawn from the orig-
inal sample and placed in 15ml tubes. These were centrifuged at 3500rpm for 20 minutes. The supernatant
from each sample was combined and transferred to a 50mL tube. This was then concentrated using Amicon
Ultra Centrifugal Filters (EMD Milipore, 2015). 15 mL of supernatant was added to Amicon Ultra Centrifu-
gal Filters. These were centrifuged at max (3750rpm) for 1 hour. The liquid was disposed. The remaining
supernatant was added to the filter which was again centrifuged at max (3750rpm) for 1 hour. 200µL from
the top of the filter was transferred into a new centrifuge tube and stored. This liquid was then added to
the pellet from the original centrifuge and DNA extracted using the PowerLyser PowerSoil DNA isolation
Kit (Mo Bio Laboratories Inc., 2015).

The DNA from the extraction was amplified using primers designed to target both the V4 region of 16S
rRNA gene and the ITS2 region of prokaryotic and eukaryotic genomes. Primers were ordered with with
5’ PHO modifications to ensure compatibility with labeling for the sequencing steps. The amplicon for the
16S should fall approximately between the 100-400bp range and the primers were designed to universally
target Archea and Bacteria (Forward: S-D-Bact-0564-a-S-15 (41345) AYTGGGYDTAAAGNG, Reverse: S-
D-Bact-0785-b-A-18 (41346) TACNVGGGTATCTAATCC). The amplicon for the ITS2 primer should fall
approximately between 200-400bp and were selected because they universally target eukaryotes (Forward:
(41343) GCATCGATGAAGAACGCAGC, Reverse: (41344) TCCTCCGCTTATTGATATGC).

The PCR was set up in a 96 well plate as follows: 20.0µL 5X HF buffer (Phusion kit), 4.0µL 10 mM
dNTPs (NEB), 4.0µL DMSO (Phusion kit), 10.0µL 5M Betaine, 5.0µL 10µM of each primer, 0.8µL Phusion
polymerase, 6.0µL DNA template. To cover the diversity represented gradient PCR was performed with the
following PCR protocol: 98◦C 0:30, 25X (98◦C 0:10, 43◦C-53◦C 0:30, 72◦C 0:30), 72◦C 5:00, 4◦C hold. Gels
were run to ensure correct band sizes. The DNA was then pooled and cleaned using Invitrogen PureLink
Pro 96 PCR purification Kit (Life Technologies, 2015). The resultant DNA was then quantified to ensure 2
micrograms and prepped for sequencing.

1.2 TMAP usage

We applied the “map2” algorithm (based off of the BWA long-read algorithm [4]), designed for reads longer
than 150bps, due to the read sizes (a mean of 240bps for 16S and 420 for ITS2 sequences – see Figures S4,
S5, and S6 for read length distributions in all chips and samples; individually, and all combined) and other
default parameters associated with it. For every read, TMAP returns the mapping with the best score. If
multiple sequences had the same best score, a random mapping among them was returned.
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1.3 OTU-based analysis for 16S data

Several OTU-based pipelines such as UPARSE [5], QIIME [6], MOTHUR [7] have been developed for the
analysis of Illumina or 454 pyrosequencing 16S and fungal only ITS2 marker-gene sequencing data. Very
recently, a pipeline that includes 16S Ion Torrent PGM sequencing is developed [8], and used it in the Brazilian
Microbiome Project (BMP) [9]. The BMP 16S profiling analysis pipeline makes use of the UPARSE OTU
clustering, and QIIME taxonomy assignment, using Ribosomal Database Project (RDP) naive classifier [10].

In order to compare our 16S data analysis results with OTU-based pipelines, we used the pipeline
suggested by BMP. We began by truncating the reads at length 200 as the read ends are assumed to have
lowered quality, and discarded any read with a smaller length. We then removed any read having an expected
error rate of 1.0, a suggested value in the UPARSE documentation [11]. We applied dereplication that
removes the identical reads for faster querying, and removed any singleton reads. We clustered the OTUs,
and applied a reference based chimera filtering using a gold database, which contains the ChimeraSlayer
reference database from the Broad Microbiome Utilities version microbiomeutil-r20110519, as described
in [12], using the plus strand, as specified. We finally assigned all quality filtered reads, including the
singletons, to the constructed OTUs at 97% identity. All analysis until this point was performed using
usearch v7.0.1090 i86linux32. We gathered the taxonomy information using assign taxonomy.py version
1.7.0 from QIIME, choosing RDP classifier as taxonomy assignment algorithm with the default bootstrap
confidence threshold of 80%, and OTUs pre-constructed from GreenGenes (version May 2013) at 97% identity,
as training sequences.

1.4 Comparison of sequence mapping and OTU-based approaches and repro-
ducibility assessment among chips

We performed a Mantel test between the sample taxonomy composition results of our approach and the BMP
pipeline for 16S data analysis as follows: at ranks phylum, class, order, family and genus, respectively we
obtained the taxonomies of both analysis results. We took the union of the taxonomies observed in the two
analyses, and assigned abundance values of 0 to any taxonomy in the union set not observed in individual
results, for all 26 time point samples. Thus, for each approach, we had pairs of relative abundance values
for all taxonomies in the union set at all time points as a matrix, which we called a taxonomy abundance
matrix, for each of the aforementioned rank. We compared these pairs of taxonomy abundance matrices using
the package “ade4” [13] in R with the function “mantel.rtest” using 999 replicates. We achieved Mantel r
statistics of 0.99, 0.98, 0.94, 0.94, 0.91 for ranks phylum, class, order, family, and genus, respectively, all
with p-value 0.001, suggesting high result similarity. Since the RDP classifier is not capable in classification
beyond the genus level, we have no comparison available with the BMP pipeline at species/sequence level of
resolution. BMP pipeline area plots at ranks phylum, class, and genus are shown in Figure S14, for visual
comparison purposes.

We also note that a 16S genus level diversity comparison between the two approaches yield a nearly
identical pattern: the linear regression describing the relationship between the two was: r2 = 0.96, P =
2.60 · 10−14.

The reproducibility assessment among chips for 16S and ITS2 data also follows the same Mantel test
approach, with the single difference of containing the top 2000 and 200 sequence relative abundances (instead
of taxa relative abundances) in the compared pairs of abundance matrices coming from different chips.

1.5 Challenges in OTU-based approaches and taxonomy assignment on ITS2
data

Given the high variance in the ITS2 region length, ranging from 100bps to 700bps [14]; length trimming,
a critically important step in an OTU-based approach [11], is not practical. Moreover, the taxon depen-
dent OTU clustering identity percentages on microbial eukaryotes [15], may render the OTU clustering
step erroneous. The taxon dependency of OTU clustering identity percentages also makes the RDP naive
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Bayesian classifier taxonomy assignment (used in OTU-based approach) challenging, as its reference taxon-
omy database is expected to be clustered at a certain identity percentage. Another challenge in contructing
a clustered ITS2 database from NCBI would lie in determining the correct boundaries of the ITS2 region,
previous to clustering, due to the flanking 18S, ITS1, 5.8S, and 28S regions in the NCBI nucleotide entries.
Previous research [16] reports that taxonomy classification results using BLASTN, a mapping based ap-
proach, and RDP naive Bayesian classifier are very similar on ITS2 data. Considering these challenges and
findings, we preferred to determine the taxa relative abundances using a mapping approach.

1.6 Outlier removal on time series ecosystem data

We initially subtracted the 7-day local central mean from each data point. We perforned this step in order
to reduce the dependency between successive points in our time series ecosystem data and to satisfy the
idenpendent, identicaly distribution requirement for a normal distribution. We, then, tested for normality
using “shapiro.test” in R, using the package “stats” [17]. Upon confirming for normality, we removed any
data point that exceeded 3σ of distance from mean. We did not perform outlier detection for NH4, urea,
NO3, NO2, and PO4, due to the expected high fluctuations stemming from pond nutrient management.

1.7 Model comparison using F-test

In order to explore the explanatory values of certain factors on a target, controlling for other factor(s), we
compared two models: a reduced and a full model. The reduced model contains the factor we would like
to control for, whereas the full model contains additional factor(s), which we are interested to explore the
effect on our target.

Reduced Model y =β0 + β1x1 + · · · + βkxk + εr

Full Model y =β0 + β1x1 + · · · + βkxk + βk+1xk+1 + · · · + βpxp + εf (1)

where in one our tests, for instance, y was chosen as the eukaryotic diversity we were targeting, x1, . . . , xk
as the factors we controlled for such as temperature and bacteria diversity, and xk+1, . . . , xp as any factor(s)
we explored the effect it had on the target, such as pre- and post-pesticide sampling. We tested if we could
reject the null hypothesis:

H0 : βk+1 = · · · = βp = 0

to see if our full model added a significant explanatory value over the reduced model, using an F statistic:

F =
(RSSreduced −RSSfull)/(p− k)

RSSfull/(n− p− 1)
(2)

where RSSi is the residual sum of squares of model i.

2 Supplementary Results

2.1 Mapping statistics

We initially discarded any read having length shorter than 50 nucleotides, and an error rate higher than 2.0
for 16S reads, and 4.0 for ITS reads, due to their longer average size compared to 16S. After mapping the
remaining 16S and ITS2 reads to respective databases, we calculated percent identity, and query-coverage,
defined as the fraction of the query sequence matching to the target, for assessing mapping quality. For
these measures, the quality was uniformly high with a mean percent identity of 97% and 96%, and mean
coverage over 94% and 82% across all 16S and ITS2 reads that mapped their respective database. (Figures
S7 and S8). Following the cutoffs applied by “16S Ribosomal RNA Reference Sequence Similarity Search”
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by NCBI [18], we used a 95% percent identity and 70% of query-coverage cutoff. On average among all
chips, 75% of the 16S and 77% of the ITS2 reads exceeded our chosen cut-offs, and were used in subsequent
analyses.

2.2 Intra-sample reproducibility assessment

In order to assess robustness in the sample composition analyses, two redundant samples were used as
technical replicates for each of samples 4, 11, 19 and 24, in the design (samples 27 and 31 were replicates
of sample 4, 28 and 32 for 11, 29 and 33 for 19, and 30 and 34 for 24). Figure S9 demonstrates that the
technical replicates consistently show low dissimilarity values (mean Bray Curtis dissimilarity values of 0.06,
0.03, 0.04, 0.02 and 0.04, 0.07, 0.50, 0.06, for the two replicates of samples 4, 11, 19 and 24 for 16S and
ITS2, chip 3.) suggesting good reproducibility, except sample 19 for ITS2 data only. We note the replicates
for sample 19 (samples 29 and 33, ITS2 data) had a skewed read length distribution, compared to sample
19 itself, (see Figure S5b), which might be a possible reason for the observed noise.

2.3 Pre- and post-fungicide relationship of productivity variability and temper-
ature

We investigated whether temperature, based on its pre-fungicide era relationship with productivity variability
(standard deviation), could predict the post-fungicide productivity standard deviation (sd) trends. Figure
S17 shows linear relationship between temperature and productivity sd in different periods. During the pre-
fungicide period, temperature showed a positive correlation with productivity sd, whereas it had a negative
correlation during the post-fungicide period, therefore temperature alone cannot explain the change in the
productivity variability observed after the fungicide application.
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Figure 1: DW (g/l) and harvest volume (kl) in time.
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Figure 2: Measured urea levels and N addition (mostly through urea addition) data.
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Figure 3: Measured PO4 levels and PO4 addition data.
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Figure 4: Read length distribution for 16S data, chips 1 (4a), 2 (4b), 3 (4c).
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Figure 5: Read length distribution for ITS2 data, chips 2 (5a), 3 (5b), 4 (5c), 5 (5d).
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Figure 6: Read length distributions for all 16S (6a) and ITS2 (6b) data.
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Figure 7: Figures 7a, 7b, 7c shows the percent identities (%ID) and query coverages (%COV) of mapping sequences
for chips 1, 2, 3; together with the percentages of sequences that are accepted as hit, after applying the 80% and 90%
%COV and %ID cutoffs for all 34 samples.
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Figures 8c and 8d

Figure 8: Figures 8a, 8b, 8c, 8d shows the percent identities (%ID) and query coverages (%COV) of mapping
sequences for chips 2, 3, 4, 5; together with the percentages of sequences that are accepted as hit, after applying the
80% and 90% %COV and %ID cutoffs for all 34 samples.
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Figures 9a, 9b, 9c, and 9d

22



●
● ● ●

●
● ● ● ●

●
● ●●

● ●

● ●●
●

●
●

●

●
●

●
●

●●
●●

●●
●
●

0.00

0.25

0.50

0.75

0 100 200 300
days

sK
L

D

(e)

●
● ● ●

●
● ● ● ●

●

●
●●

●
●

● ●●
●

● ●

●

● ● ● ●

●● ●●

●●
●●

0.00

0.25

0.50

0.75

0 100 200 300
days

sK
L

D
(f)

● ● ● ●
● ● ● ● ●

●● ●●● ● ●
●
●

●

●
●

●

● ● ●
●

●●
●●

●
●

●
●

0.0

0.2

0.4

0.6

0 100 200 300
days

sK
L

D

(g)

● ● ● ●●
● ● ● ● ●● ●●● ● ● ●●

●
●

●

●

●

●

●

●

●● ●●

●●

●

●0.0

0.2

0.4

0.6

0.8

0 100 200 300
days

sK
L

D

(h)

Figures 9e, 9f, 9g, and 9h

Figure 9: Divergences across selected samples: 9a, 9b, 9c, and 9d shows the distances between sample 4, 11, 19,
24, and all other samples, respectively for 16S data, whereas 9e, 9f, 9g, and 9h shows it for ITS2 data. Grey points
correspond to original samples, while green points represent the technical replicates of the samples sharing their x-axis
value. The zero KL distance (y-axis) on each plot indicates which sample all other samples are compared against.
Good reproducibility is achieved when the green points superimposed over the fixed samples (4, 11, 19, 24) also have
zero KLD values.
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Figure 10: Rarefaction Curves: Depicts the converging diversity (Shannon H) rarefaction curves for Bacteria,
Eukaryota, Viridiplantae, algae, and Fungi, over all 16S and ITS2 reference sequences, averaged over 100 interations.

24



0

1

2

3

0 1000 2000 3000 4000 5000
number of sampled hits

Sh
an

no
n'

s 
H

samples

S01 S02

S03 S04

S05 S06

S07 S08

S09 S10

S11 S12

S13 S14

S15 S16

S17 S18

S19 S20

S21 S22

S23 S24

S25 S26

Bacteria diversity rarefaction curve

(a)

0.0

0.5

1.0

1.5

2.0

0 1000 2000 3000 4000 5000
number of sampled hits

Sh
an

no
n'

s 
H

samples

S01 S02

S03 S04

S05 S06

S07 S08

S09 S10

S11 S12

S13 S14

S15 S16

S17 S18

S19 S20

S21 S22

S23 S24

S25 S26

Eukaryota diversity rarefaction curve

(b)

0.0

0.5

1.0

1.5

2.0

0 1000 2000 3000 4000 5000
number of sampled hits

Sh
an

no
n'

s 
H

samples

S01 S02

S03 S04

S05 S06

S07 S08

S09 S10

S11 S12

S13 S14

S15 S16

S17 S18

S19 S20

S21 S22

S23 S24

S25 S26

Viridiplantae diversity rarefaction curve

(c)

0.0

0.5

1.0

1.5

0 1000 2000 3000 4000 5000
number of sampled hits

Sh
an

no
n'

s 
H

samples

S01 S02

S03 S04

S05 S06

S07 S08

S09 S10

S11 S12

S13 S14

S15 S16

S17 S18

S19 S20

S21 S22

S23 S24

S25 S26

Algae diversity rarefaction curve

(d)

Figures 11a, 11b, 11c and 11d
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Figure 11e

Figure 11: Rarefaction Curves: Depicts the converging diversity (Shannon H) rarefaction curves for Bacteria,
Eukaryota, Viridiplantae, algae, and Fungi, over the top 2000 and 200 16S and ITS2 reference sequences, averaged
over 100 interations.
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Figure 12: Dry weight (kg): Algal dry weight in kg, with peaks on days 165, and 228 marked.
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(a) Top 1000 sequences hit in GreenGenes.
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(b) Top 200 sequences hit in constructed ITS2 database from NCBI.

Figure 13: Finest granularity (sequence level) area plots: Top hit reference sequences in 16S, using two different
databases, and ITS2 data, respectively.
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Figure 14: Bralizian Microbiome Pipeline area plots at phylum (14a), class (14b), and genus (14c) levels for 16S
data. Taxa not shown.
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(a) Alignment of GI: 532165669 (b) Alignment of GI: 532165968

(c) Alignment of GI: 194354257 (d) Alignment of GI: 532165358

Figures 15a, 15b, 15c, and 15d
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(e) Alignment of GI: 532166006

Figure 15e

Figure 15: Alignment results of the five most abundant fungal sequences to their highest scoring BLAST hits of
known phylum level taxonomy.

Figure 16: Distance tree for GI: 532165669, and GI: 532165968, collapsed on the branch highlighted in yellow.
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Figure 17: Pre- and post-fungicide temperature and productivity variability relationship.
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Figure 18: Select Phenotypes: Relationship of temperature, urea, and photosynthetic health (Fv/Fm) over time,
standardised by centering around their mean and division by their standard deviation.
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Figure 19: Number of available data points inside given half window (h) in original and imputed (using OD 750)
DW (g/l) data.
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Figure 20: Variance patterns of original and imputed (using OD 750) DW (g/l) data using half window size of
h = 28 days.
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Figure 21: Example highly correlated phenotypic variable cluster: 7 phenotype variables (560 OD AVG,
750 OD AVG, DW g/L, Chloro1 450/685 nm AVG, Green1 430/685 nm AVG, KG, Cyano1 383/685 nm AVG) that
mainly consist of various fluorescence levels and dry weight measures. Normalized variables, together with their first
normalized principle component (dashed red), explaining 87.3% of the variance of the cluster.
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(a) Productivity mean for h:16-36 days
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(b) Productivity standard deviation for h:16-36 days

Figure 22: Productivity statistics trends for various h (half window) sizes changing from 16 to 36 days.
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